gzip.ru - технологии для людей
Радиотехника, электроника и схемы Ремонт и модернизация энергосберегающих лампочек

Энергосберегающая лампочка

Энергосберегающие лампы, или компактные люминесцентные лампы (КЛЛ), - один из этапов развития устройств освещения. В основе этих ламп используется малогабаритная люминесцентная лампа и электронный пуско-регулирующий аппарат (ЭПРА, электронный балласт), встроенный в цоколь лампы. Вследствие своей компактности, данные лампы по габаритам чуть больше обычных ламп накаливания и менее подвержены механическим повреждениям по сравнению с обычными люминесцентными лампами. Благодаря применению электронного балласта (схемы запуска), отстутствует гудение, присущее дроссельным схемам включения люминесцентных ламп, мерцание, и лампа включается мгновенно, хотя есть варианты с плавным включением.

В настоящее время энергосберегающие лампочки получили широкое распространение. Качество данных ламп варьируется очень сильно. Фирменные лампы - более дорогие, имеют плавное включение и работают дольше. Более дешёвые лампы, а также подделки под известные бренды, чаще всего не отрабатывают и полугода.

Наиболее частые причины поломки энергосберегающих ламп - обрыв нити накала и выход из строя ЭПРА. Как правило, причиной выхода из строя последнего бывает пробой резонансного конденсатора или транзисторов.

Причин быстрого выходя из строя ламп несколько:

1. Некачественные компоненты. Применение деталей, расчитанных на меньшие токи/напряжение, несогласованность работы, отсутствие некоторых деталей на плате в целях экономии.

2. Жёсткий режим работы лампы. В цоколе лампы часто полностью отсутствует вентиляция, а в местах расположения электродов лампы температура часто достаточно высокая. Перегрев приводит к выходу из строя деталей балласта или провисанию и обрыву нити накала.

Починка лампы возможна чаще всего только в случае поломки балласта. Его можно либо заменить полностью (от лампы такой же мощности) или заменить неисправные детали. В некоторых случаях, можно восстановить работоспособность лампы, замкнув перегоревшую спираль. Как вариант - замкнуть резистором на 8-10 ом большой мощности и убрать шунтирующий данную спираль диод, если таковой имеется. Однако, подобный ремонт не рекомендуется.

Чтобы энергосберегающая лампа работала долго, её необходимо модернизировать. Предлагаемый здесь вариант модернизации состоит из двух этапов:

1. Установка NTC-термистора последовательно с резонансным конденсатором. Введение данного элемента позволит ограничить пусковой ток нитей накала лампы и уберечь их от обрыва. Здесь достаточно даже небольшого сопротивления термистора. В отличие от PTC термистора, который должен быть установлен параллельно резонансному конденсатору и обеспечивать прогрев нитей перед поджигом, данная модернизация не приводит к заметной задержке включения лампы.

2. Проделывание вентиляционных отверстий в цоколе лампы. Это обеспечивает лучшее охлаждение деталей балласта.

Модернизированные таким образом лампы работают в течение многих лет.

Лампа, вид снизуДля того, чтобы разобрать лампу, необходимо отпаять внутренний проводник от нижней контактной площадки лампы, залитой припоем.
Цоколь лампыНеобходимо отогнуть часть цоколя, которая представляет собой металлическую резьбу, чтобы освободить второй внутренний провод. Место, в котором прижат провод, можно определить по небольшой выпуклости или торчащему кусочку провода.
Открытая лампаВнутри лампы находится печатная плата электронного балласта.
NTC термисторДля модернизации подойдёт любой NTC-термистор, предназначенный для ограничения пусковых токов, сопротивлением 5-15 Ом. В холодном состоянии термистор имеет указанное сопротивление, что ограничивает текущий через него ток. При нагреве сопротивление уменьшается и термистор не влияет на работу схемы.
Лампа с установленным термисторомТермистор необходимо установить в разрыв нитей накала лампы (на фото показан именно этот вариант). Возможна также установка последовательно с резонансным конденсатором, при этом логика работы меняется. При работе термистор нагревается, поэтому не стоит устанавливать его вплотную к другим компонентам.
Собранная лампаПеред сборкой в цоколе лампы необходимо просверлить вентиляционные отверстия, чтобы сделать температурный режим работы более мягким. Ряд отверстий вокруг места крепления трубки лапмы служит для отвода тепла от самой трубки. Ряд отверстий ближе к металлической части цоколя служит для отвода тепла от компонентов балласта. Тажке можно сделать ещё один ряд отверстий - посередине, большего диаметра.


Данная модернизация энергосберегающей лампы поможет существенно продлить срок её службы. Не стоит устанавливать модернизированную лампу в места повышенной влажности (например, ванную комнату).

Наиболее благоприятные условия для работы энергосберегающих лампочек - в открытом виде, либо - широком плафоне или плафоне с вентиляцией.

Возможно, Вам будут полезны схемы энергосберегающих ламп.

Практические советы и фотографии вынесены в отдельную статью по ремонту ламп.

Свежая модернизация ламп от 2012 года.

Подобрать хорошую электронику
Подобрать хорошую электронику



Сохраните статью:

Пожалуйста, напишите комментарий к статье:
Ваше имя
Комментарий
Длина текста:
введите число с картинки

Комментарии: 1234567891011121314

александр09 июл 2014 13:19
5+

LA09 май 2014 7:27
В те времена, когда у нас появились энергосберегающие лампы, из брендовых были лишь Osram, но цена на них была в 2-2.5 раза выше, чем на безымянные. Поэтому в 2/3 случаев дорабатывались именно такие дешёвые лампы. В остальных случаях для сравнения дорабатывались фирменные.

Андрей08 май 2014 19:43
По поводу надежности Shine и osram сказать ничего не могу, так как за много лет впервые стал покупать эти лампы, поставил теще, родителям, даты установки на них записал, буду ждать сколько отработают, а дальше уже делать выводы.

Андрей08 май 2014 19:40
Я так понимаю лампочки отработавшие 6 лет не за 50 рублей покупали?
Из моего опыта: лампы Wonderfull 18Вт Е27(около 50 руб. в Бауцентре) - без доработок в прихожей отрабатывали от 6мес. до 1 года, после доработки с помощью NTC термисторов одна лампа сгорела через 6 месяцев,еще одна через 9 месяцев и 2 через 11 месяцев(всего в люстре 4 шт.). Прогресса никакого, хотя NTC термисторы смонтированы снаружи корпуса лампы и включений без выдержки как минимум 5 минут после выключения не происходят. При установке дату на лампы всегда записываю.Другая история: в зале в люстре установлены 6 ламп 15Вт Е14 Camelion со встроенными позисторами, без всяких доработок светятся уже более 4-х лет (каждый день по вечерам не менее 3-х часов). Для себя решил пойти по пути доработки дешевых ламп позисторами из ламп со сгоревшими колбами но путевыми ЭПРА, либо заменой ЭПРА если позволяет корпус. Дальше буду смотреть что из этого получится. По поводу закорачивания спиралей - попробовал закоротил одну сгоревшую, разгерметизация колбы через несколько секунд(отвалился запаянный конец видимо из-за перегрева уцелевшей спирали, спираль естественно сгорела) больше таких экспериментов ставить не буду.Кстати лампы с позисторами сейчас можно купить по цене порядка 80 руб. за штуку 15-20Вт (Shine, osram)

Вадим02 май 2014 18:22
Да 6 лет срок приличный - это явно указывает на эффективность ограничения тока в накале. Я же пока попробовал ставить последовательно с резонансным конденсатором постоянный резистор на 20 Ом - он уменьшает накальный ток в 2 раза. После зажигания сама лампа шунтирует всю RC цепочку. Вроде полгода прошло и все нормально - лампа горит. Попробую переделать лампы и поставить их в ванну и туалет - их часто там включают и выключают - вот где настоящее испытание временем

LA20 мар 2014 0:07
Эта статья была написана в 2008 году. Сейчас 2014, то есть лампы отработали порядка шести лет. Буду проводить ревизию - сфотографирую и покажу, как они выглядят сейчас. Пластмасса пожелтела и потемнела, ослабел термоклей, удерживающий колбы и они наклонились, но лампы, между тем, работают до сих пор.

Сергей18 мар 2014 15:15
Может быть термистор и имеет смысл ставить последовательно с дросселем,но я думаю пользы больше от позистора параллельно резонансному конденсатору,так как он непосредственно учавствует именно в прогреве спиралей,а термистор его не заменит,а дополнит,поэтому позистор считаю обязательным. По поводу где его брать,я давно этот вопрос решил,это вовсе не проблема,все свои лампы укомплектовал. Он делается из позистора петли размагничивания кинескопа,таблетка ламается на нужные кусочки,подпаиваются проводки(мгтф)вставляется в силиконовую трубку.
Ещё тренировка спиралей -результативная процедура,после тренировки, лампы ярче светят и дольше работают,думаю даже в 2 раза..
Всё что можно сделать с клл для продления её жизни это: Оттренировать спирали,посавить позистор,по возможности поставить диодные мосты,если влезут,на спирали,для симметрирования токов и запомнить,что каждое включение отнимает час ресурса работы. Всё,больше улучшить и продлить жизнь лампы нечем!Больше выдумать нечего,переливать из пустого в порожнее.. Люминесцентные лампы типа т8,отдельные от светильника и балласта,можно совершенствовать более качественным балластом. Их ресурс очень велик.
Я заставил работать клл баллоны с перегоревшими спиралями от трети до половины их ресурса,это возможно...

LA05 фев 2014 10:57
С согласия Григория, его сообщения перенесены в отдельную статью. Эта информация будет очень полезена людям, которые также пытаются усовершенствовать энергосберегающие лампы.

Вадим07 дек 2013 1:23
Обычно его устанавливают параллельно резонансному конденсатору, но в этой лампе один конденсатор разбит на два и PTC включен параллельно одному из них. Такое включение широко распространено и применяется чаще всего на лампах повышенной мощности. Дело в том, что геометрические размеры PTC определяют скорость нагревания терморезистора PTC. При большой мощности лампы этого времени недостаточно для прогрева катодов и эффективность установки элементов защиты падает. Если разбить резонансный конденсатор на два и поставить терморезистор параллельно одному из них, то напряжение на нем будет меньше и скорость нагревания снизится.

P.S. Из этих слов следует что во все лампы ставят одинаковые РТС иначе можно было не разбивать конденсатор на 2 а просто взять термистор в 1.4 раза большего начального сопротивления чтоб он в 2 раза медленнее прогревался а не уменьшать на нем напряжение разбив конденсатор на 2

Схема запуска с использованием динистора. Терморезистор PTC обладает сопротивлением 890 Ом при температуре 23 градуса. Частота генерации 40.3 кГц (200 В) –34.2 кГц (300В).

Лампа 20 Вт с разбитым на 2 резонансным конденсатором

Схема запуска с использованием динистора. В схеме присутствует PTC, что не должно вызывать удивления, ведь это указывается в документации, вот только удивление все же присутствует. Ба, поставили-таки! Терморезистор PTC подключен параллельно конденсатору 6.8 нФ, его сопротивление 594 Ом на 23 градусах. Частота генерации 52 кГц (200 В) – 43.1 кГц (300В).

Лампа 8 Вт с разбитым на 2 резонансным конденсатором 3,3+6,8 нФ

Схема запуска с использованием динистора. Довольно необычно для данного тестирования, но в этой лампе терморезистор PTC подключен параллельно резонансному конденсатору, а не одному из пары, как было в предыдущих случаях. Сопротивление терморезистора 716 Ом. Частота генерации 43 кГц (200 В) – 39.7 кГц (300В).

Лампа 8 Вт с 1 резонансным конденсатором 2,2 нФ

Видно что номиналы примерно одинаковы. Лично я бы зашунтировал весь резонансный конденсатор - это увеличит время до зажигания потому что рост напряжения начнется с нуля но увеличит срок службы. если задержка 1-4 сек то прогрев нормальный.

Михаил04 дек 2013 10:53
Подскажите пожалуйста подходящий номинал РТС терморезистора для лампы мощностью 58W.
Спасибо.

Вадим21 ноя 2013 3:06
В схеме лампы с автогенератором (не самое стабильное решение) не просто просчитать какой там будет бросок тока - это же не просто напряжение с накальной обмотки трансформатора где понятное дело ток холодной будет в разы выше горячей. Тут мерять надо - может энергии дросселя и резонансного конденсатора просто не хватит чтобы сделать этот бросок и прогревается она и так довольно плавно - надо мерять

Гость21 ноя 2013 2:44
Ну я предполагал, что плавный разогрев спиралей лампы (РТС терморезистор) должен так-же хорошо влиять на срок службы как и плавный разогрев нитей накала в ЭЛТ (задержка подачи высокого на кинескоп). Но по идее и ограничение тока разогрева спиралей тоже должно сказаться на разрушении вольфрама спирали положительно. Самое интересное нигде не нашел графика тока через спирали - а их легко снять взяв осцилограмму на резисторе сопротивлением 1-2 ома впаяном до спиралей - может оказаться никакого броска тока и нету вовсе

Сергей18 ноя 2013 13:04
Я делал эксперимент с лампами без позистора и с ним,лампы с позистором в 1.5 раза дольше живут,с резистором последовательно не пробовал,размышляю теоретически,отталкиваясь от вышеприведённого эксперимента. Ещё эксплуатировал лампы с перемкнутыми спиралями (без прогрева вовсе),живут в 1.5 раза меньше чем те что без позистора..

Перечитайте весь форум,тут много интересного,особенно от Алексея. Может поймёте принцип работы люминесцентной лампы,назначение спиралей,и что они являются самым важным звеном в лампе. Отличие от ламп с холодным катодом может поймёте...Прогрев спиралей является самым важным условием правильной ,долговечной работы лампы,при правильном поджиге ресурс у ламп можно дотянуть до 30 тысяч часов.

Вадим13 ноя 2013 15:18
Так она без PTC терморезистора и так на холодную поджигается. Посмотрите и сравните осциллограммы с
http://www.overclockers.ru/lab/48303/Energosberegajuschie_lampy._Izuchenie_elektroniki_KLL_chast_2.html
и автор статьи писал что даже если стоит PTC то срок службы не на много продляется, а если ограничить бросок тока то вроде хорошо срок службы увеличивается. Тут теорией трудно что-то выяснить. Нужны стендовые испытания - взять 15 ламп без PTC из них в 5 впаять PTC а в 5 впаять резистор на 20 Ом последовательно резонансному конденсатору и посчитать через сколько включений/выключений сгорит каждая лампа - после такого испытания можно будет что-то сказать а так это пустая болтовня
P.S. 15 ламп естественно из одной партии одного производителя

Сергей06 ноя 2013 20:07
Покажите мне лампу с завода установленным термистором ! Холодный поджиг убивает лампу в разы быстрее чем обрыв спирали броском тока в цепи накала. Обрывается спираль не именно от броска,а от того что покрытие спирали истощено,и эмиссия происходит уже за счёт вольфрама,в этом месте и перегорает... Вы не задумывались почему всегда перегорает одна спираль...?

Вадим19 окт 2013 13:31
Немного ошибся 4000 С - это температура ЛДС. У вольфрама температура плавления 3400 С. Спирали накала вообще греются где-то 1500-2000 С. При 2000 С их сопротивление возрастет с 16 до 146 Ом т.е почти в 10 раз

Вадим19 окт 2013 13:23
Сегодня припаял постоянный резистор на 20 Ом последовательно резонансному конденсатору. Запускается лампа нормально. В процессе работы резистор не греется. Осциллограф было лень доставать из шкафа поэтому напряжение на резисторе не смотрел. Будем проверять временем. По идее стартовый ток через спирали упал более чем в 2 раза. Потом спирали нагреваются и их сопротивление при 4000 С возрастет с 16 до 277 Ом - по мере нагревания влияние резистора будет все меньше и меньше. После того как лампа зажжется её низкое рабочее сопротивление ещё сильнее уменьшит ток в RC цепочке

Гость17 окт 2013 10:28
А почему в качестве резонансного конденсатора нельзя использовать керамический?

Вадим17 окт 2013 1:03
Нет вряд ли получиться - напряжение пробоя на двух закороченных 1,5 кв - точно нужно менять резонансный конденсатор. Вот статьи где об этом пишут:
http://www.overclockers.ru/lab/48302/Energosberegajuschie_lampy._Izuchenie_elektroniki_KLL_chast_1.html
http://www.overclockers.ru/lab/48303/Energosberegajuschie_lampy._Izuchenie_elektroniki_KLL_chast_2.html
Но закоротить одну при сгорании не грех - чаще всего она сгорает при проблемах с резонансным конденсатором - как я понял он в этом автогенераторе довольно капризный элемент.

Остается проверить можно ли поставить постоянный резистор последовательно резонансному конденсатору и будет ли он греться/влиять на работу лампы после розжига. Как я понял из этих статей напряжение в штатном режиме на колбе 110-150 В - интересно что происходит в цепи конденсатора - какая там сила тока при частоте 40 кГц и емкости 2200 пикофарад - вроде даже теоретически можно прикинуть.

Ток в цепи конденсатора будет
I=2*pi*f*C*U=2*3,14*40000*2,2*10^-9*150=0,083 А. Мощность выделяемая на резисторе сопротивлением 10 Ом составит 0,083^2*10=0,07 Вт. Это немного. Можно попробовать. Импульсная мощность кратковременная. Если напряжение при пробое 600 В то ток будет в 4 раза выше в этот момент а мощность на резисторе в 16 раз больше, т.е. 1,12 Вт - но это только первые миллисекунды. Для страховки можно взять резистор на 0,25 Вт.

LA16 окт 2013 22:43
Боюсь, что "небольшой переделкой балласта" тут не обойтись. Драйвер CCFL - это отнюдь не автогенератор на двух транзисторах. При этом ресурс ламп с холодным катодом также ограничен. Пример - CCFL подсветка в LCD мониторах и телевизорах.

Если же применить резонансный метод для постоянного горения энергосберегающей лампы с закороченными спиралями, то из-за повышенного напряжения и тока эмиссия электродов будет уменьшаться ничуть не меньше, чем если бы лампа работала в штатном режиме с подогревом спиралей. Это теоретически, на практике же можно проверить, взяв новую лампу и переделав на работу с закороченными спиралями, если это действительно возможно.

Комментарии: 1234567891011121314

Дальше в разделе радиотехника, электроника и схемы: Ремонт настольной лампы, простой способ, как починить настольную лампу, когда у неё ломается нижнее крепление к основанию.

Главная gzip.ru База знаний радиолюбителя Контакты и кнопки